Anomalous Shape Coexistence in ¹⁸⁵Hg

G.J. Lane¹, R.M. Clark¹, M. Cromaz¹, M.A. Deleplanque¹, R.M. Diamond¹, P. Fallon¹, A. Görgen², I.Y. Lee¹, A.O. Macchiavelli¹, S. Schmel², F.S. Stephens¹, K. Vetter¹, D. Ward¹

¹ Nuclear Science Division, Lawrence Berkeley National Laboratory

² University of Bonn, Bonn, Germany

The existing data [1] on $\nu i_{13/2}$ bands built upon shape-coexisting states in ¹⁸⁵Hg show two unusual features. (1) The E2 branching ratios imply a very small interaction between the prolate and oblate shapes [2]; this is inconsistent with the large values observed in ¹⁸⁷Hg [3] and the even-mass mercury isotopes [4]. (2) The $\frac{15}{2}$ and $\frac{17}{2}$ states are inverted in the prolate rotational band, contrary to the behaviour observed in the other odd-mass mercury isotopes [2]. It is important to re-examine the γ -ray spectroscopy of ¹⁸⁵Hg to resolve these problems, especially since information concerning the coexisting prolate and oblate rotational bands in odd-neutron isotopes in the Pt/Hg/Pb region, is limited to only ¹⁸⁵Hg [1] and ¹⁸⁷Hg [3], yet they show such significant differences.

We have performed a $\gamma - \gamma$ coincidence experiment using the 8π spectrometer and the $^{161}\mathrm{Dy}(^{28}\mathrm{Si},4n)$ reaction at 142 MeV, with an $800~\mu\mathrm{g/cm^2}$ self-supporting target. With a sum energy (H) cut in the inner BGO ball to enhance the $^{185}\mathrm{Hg}$ channel, a symmetrized matrix with $78\times10^6~\gamma-\gamma$ coincidence events was created, and, from this matrix, a level scheme for $^{185}\mathrm{Hg}$ was constructed.

The previous level scheme in the region of the crossing of the prolate and oblate $i_{13/2}$ neutron bands has been significantly modified. Of particular note is that the prior observed $\frac{21}{2}^+ \rightarrow \frac{17}{2}^+$ transition in the oblate band cannot be confirmed. This means that out of the odd-mass mercury isotopes, only in ¹⁸⁷Hg are there well-developed bands built upon both prolate and oblate shape.

Also, a new $\frac{17}{2}^+$ state has been identified at low excitation energy in $^{185}{\rm Hg}$. Some of the

evidence for this can be seen in Fig. 1, where the newly observed 151 and 206 keV transitions form an alternative $\frac{19}{2}^+ \rightarrow \frac{17}{2}^+ \rightarrow \frac{15}{2}^+$ decay path, parallel to the previously known 358 keV, $\frac{19}{2}^+ \rightarrow \frac{15}{2}^+$ transition. The presence of a third $\frac{17}{2}^+$ state has obvious implications for the mixing calculations which previously failed to describe the shape coexistence in $^{185}{\rm Hg}$.

Further work to try and understand the origin of the third $\frac{17}{2}$ state, as well as refine the band-mixing calculations, is in progress.

- [1] F. Hannachi et al., Z. Phys. A 330, 15 (1988).
 [2] G.J. Lane et al., Nucl. Phys. A589, 129 (1995).
- [3] F. Hannachi *et al.*, Nucl. Phys. **A481**, 135 (1988).
- [4] G.D. Dracoulis, Phys. Rev. 49, 3324 (1994).

Figure 1: Coincidence spectrum for the 451 keV, $\frac{23}{2}^+ \rightarrow \frac{19}{2}^+$ transition from the prolate $i_{13/2}$ band in ¹⁸⁵Hg.

